Exercise 12

In Exercises 9 to 12, describe all unit vectors orthogonal to both of the given vectors.

$$
2 \mathbf{i}-4 \mathbf{j}+3 \mathbf{k},-4 \mathbf{i}+8 \mathbf{j}-6 \mathbf{k}
$$

Solution

Each of the vectors can be written as

$$
\begin{aligned}
2 \hat{\mathbf{x}}-4 \hat{\mathbf{y}}+3 \hat{\mathbf{z}} & =(2,-4,3) \\
-4 \hat{\mathbf{x}}+8 \hat{\mathbf{y}}-6 \hat{\mathbf{z}} & =(-4,8,-6)
\end{aligned}
$$

Notice that the second one is a constant multiple of the first: $-2(2,-4,3)=(-4,8,-6)$. Every unit vector lying in a plane with $(2,-4,3)$ as its normal vector is orthogonal to both of the given vectors. The equation of the plane is given by

$$
\begin{gathered}
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0 \\
(2,-4,3) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0 \\
2\left(x-x_{0}\right)-4\left(y-y_{0}\right)+3\left(z-z_{0}\right)=0 \\
2 x-4 y+3 z=C,
\end{gathered}
$$

where C is a constant.

